
   

Tel. +41 31 684 37 11 

info@cred.unibe.ch 

www.cred.unibe.ch 

CRED 

Universität Bern 

Schanzeneckstrasse 1 

Postfach 

CH-3001 Bern 

 

 

 
 
 

Differences-in-Differences with multiple Treatments under 

Control 

CRED Research Paper No. 41 

 

 

Marcus Roller 
University of Bern,  

CRED 

Daniel Steinberg 
International School  

of Management 

 

 

January 2023 

Abstract 

Numerous quasi-experimental identification strategies making use of the difference-

in-differences setup suffer from multiple treatments which can be separated into 

sequential and simultaneous treatments. While for causal inferences under sequential 

treatments a staggered difference-in-differences approach might be applied, for 

causal inferences under simultaneous treatments the standard differences-in-

differences approach is normally not applicable. Accordingly, we present an adjusted 

differences-in-differences identification strategy that can neutralize the effects of 

additional treatments implemented simultaneously through the definition and the 

specific composition of the control group and an amended common trend assumption. 

Even though the adjusted difference-in-differences strategy identifies the average 

treatment effect on the treated, we also show that the adjusted strategy is capable of 

identifying the average treatment effect under stronger common trend assumptions 

and the absence of interaction effects between the treatments. 
 

 

Key words: Econometrics, Semiparametric and Nonparametric Methods, Treatment Effect 

Models 
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1 Introduction

In order to identify and quantify the causal impact of a certain treatment based on observational

data, economists make frequent use of quasi-experimental identification strategies.1 In partic-

ular, the difference-in-differences (DiD) setup is frequently applied to determine the average

treatment effect of an intervention. However, in practical contexts these research designs are

particularly prone to multiple treatments which can be segmented into sequential treatments

and simultaneous treatments. Whilst for the identification of sequential treatment effects a

staggered DiD setup might be applied, for the delineation of separate treatment effects under

simultaneous treatments the standard DiD is normally not applicable. This paper sets out the

detailed necessary and sufficient conditions in order to neutralize and eliminate the effects of

additional treatments implemented simultaneously as part of an adjusted DiD strategy.

As highlighted previously, the effects of sequential treatments can be identified based on a

staggered DiD setup (e.g. Wooldridge, 2021). In essence, the staggered DiD estimates ”are

variance-weighted averages of many different 2x2 DiDs, each involving the comparison between

a treated and an effective control group in a window before and after the treated group”

(Baker et al., 2022, p. 371).2 Under the condition that the adoption dates of the treatments

are randomly assigned, the “standard DiD estimator is an unbiased estimator of a particular

weighted average causal effect” (Athey and Imbens, 2022). However, according to Baker et al.

(2022), Bailey et al. (2021) and Goodman-Bacon (2021), deriving static treatment effects based

on a staggered DiD setup is problematic since the treatment effects might change over time,

potentially even translating into reversed treatment effects. Moreover, making use of partially

treated control groups in a staggered DiD setup might lead to a problem of “bad comparisons”.

In light of the weaknesses, de Chaisemartin and d’Haultfoeuille (2020a) propose a slightly

amended two-way fixed effects estimator in order to solve the bad comparisons problem.

In contrast to a DiD setup with sequential treatments, causal identification and the delineation

of causal effects under simultaneous treatments is even more challenging. Roller and Steinberg

(2020) assess the impact of two simultaneous treatments, the introduction of centralized school

examinations and preponed school tracking, on PISA achievement test scores of German stu-

dents. By making use of additional common trend assumptions, the authors utilize a partially

treated control group in order to neutralize the effect of the additional treatment. In addition,

de Chaisemartin and d’Haultfoeuille (2020b) applies the amended version of the two way fixed

effects highlighted above to a setup with several treatments. Moreover, Fricke (2017) analyzes

the DiD strategy in a setup in which the treatment group is exposed to a treatment and the

control group is exposed to a same or similar treatment but to a lower extent. Hence, both the

1Compare e.g. Card and Krueger (1993) as well as Imbens and Wooldridge (2009).
2Further contributions regarding two way fixed effects approaches under multiple treatments originate from

Callaway and Sant’Anna (2021) and Hull (2018).
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treatment and the control group are exposed to a similar treatment but the intensity of the

exposition differs across both groups. According to the approach proposed by Fricke (2017),

“instead of the difference between two treatments, the DiD estimand can be interpreted as

the lower bound in magnitude of an average treatment effect on the treated in comparison to

the non-treatment state” (p. 430). Accordingly, the author makes use of bounding treatment

effects as part of the identification strategy under multiple treatments. Rather than compar-

ing two states implementing the same treatment but with differing intensities, we provide an

adjusted DiD approach according to which the treatment group is exposed to totally different

treatments. Additionally, Frölich (2004) discusses program evaluations under multiple treat-

ments as well. However, the author does not lay out a detailed identification strategy in order

to determine the effect of several interventions on an outcome. Rather, the author provides a

general discussion of various non-parametric approaches. We complement the papers proposed

by Fricke (2017) and Frölich (2004) by laying out necessary and sufficient conditions for the

application of the DiD strategy under multiple treatments.

In particular, we postulate that the treatment group is exposed to two treatments, a treatment

of interest and a treatment not of interest, which are implemented simultaneously in a particu-

lar group. In practical contexts, several interventions like labor market programs are often put

in place in parallel in order to strengthen the corresponding effects, e.g. mitigating unemploy-

ment. To separate the effects of both treatments on an outcome variable, similar to Roller and

Steinberg (2020) and de Chaisemartin and d’Haultfoeuille (2020b), our adjusted DiD strategy

relies on a specific definition and composition of the control group. If one group was treated

with only one out of the two treatments, it restricts the control group to this specific group

to neutralize the impact of the additional treatment which is not of interest to the researcher.

Under a set of traditional assumptions and a modified common trend assumption, the adjusted

DiD strategy identifies the average treatment effect on the treated (ATET). The identification

of the average treatment effect (ATE) relies on several additional common trend assumptions

and the requirement that both treatments do not interact with each other, i.e. their effects are

additive. A practical application of the adjusted DiD framework in educational economics is

presented in Roller and Steinberg (2020).

The paper is structured as follows: Section 2.1 lays out the notation for the subsequent sections

while section 2.2 introduces the main definitions and section 2.3 the main assumptions. Section

2.4 specifies the adjusted DiD identification strategy under multiple treatments and section 2.5

is devoted to the identification of population treatment effects. Section 2.6 discusses indicative

tests of the underlying assumptions from a practical perspective and section 3 concludes.
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2 Differences-in-Differences with multiple treatments

2.1 Notation

We follow the notation as laid out in Lechner (2011) for a standard DiD setup and assume

that a researcher is interested in the effect of a binary treatment D = d, d ∈ {0; 1}, which

is implemented between the pre-treatment period t = 0 and the post-treatment period t = 1,

t ∈ T = {0; 1}. Simultaneously, an additional binary treatment E = e, e ∈ {0, 1}, might be

implemented in which the researcher is not interested. Accordingly, the researcher observes

an outcome variable in each period t, Yt, while the potential outcome variable in period t is

denoted as Y d,e
t . In addition, the researcher might observe covariates, X, which could serve as

time invariant fixed effects.3

In the pre-treatment period, neither treatment D nor treatment E is implemented while in

the post-treatment period either treatment E or treatment D or both treatments D and E

are implemented simultaneously. It is also possible that no treatment is implemented at all.

Thus, in the post-treatment period, the set of possible observation groups which are potentially

composed of one or several states might be exposed to the following treatments:

� Group 1: D = 0, E = 0 (no treatments)

� Group 2: D = 1, E = 0 (singular treatment D)

� Group 3: D = 0, E = 1 (singular treatment E)

� Group 4: D = 1, E = 1 (multiple treatments D and E)

In the following subsections, we lay out detailed definitions, i.e. we specify the treatment effect

of D (section 2.2.1), the treatment effect of E (section 2.2.2) as well as the treatment effect of

D and E (section 2.2.3), respectively.

2.2 Definitions

2.2.1 Average treatment effect of D

The ATE of treatment D in period t is defined as the sum of the ATET of the treatment

of interest, D, conditional on the treatment not of interest, E, weighted with the respective

3The setup can easily be generalized to a scenario with more than two treatments and time varying covariates.
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probabilities, P :

ATED
t =P (D = 1, E = 1)ATET

D|E=1
t|D=1,E=1

+ P (D = 1, E = 0)ATET
D|E=0
t|D=1,E=0

+ P (D = 0, E = 1)ATET
D|E=1
t|D=0,E=1

+ P (D = 0, E = 0)ATET
D|E=0
t|D=0,E=0 (1)

The ATET of D for those who are actually exposed to treatments D and E in period 1,

conditional on receiving the additional treatment E4, is defined as the expected difference in

the potential outcomes, Y 1,1
1 − Y 0,1

1 :

ATET
D|E=1
t|D=1,E=1 =E[Y 1,1

1 − Y 0,1
1 |D = 1, E = 1]

=E

E[Y 1,1
1 − Y 0,1

1 |X = x,D = 1, E = 1]︸ ︷︷ ︸
δ1t (x)

|D = 1, E = 1


=EX|D=1,E=1δ

1,1
t (x) (2)

The additional ATET which are part of the definition of ATE can be specified in a consistent

manner. In particular, ATET
D|E=0
t|D=1,E=0 is defined as the expected difference in the potential

outcomes, Y 1,0
1 − Y 0,0

1 , conditional on receiving the treatment D but not treatment E:

ATET
D|E=0
t|D=1,E=0 =E[Y 1,0

1 − Y 0,0
1 |D = 1, E = 0]

=E

E[Y 1,0
1 − Y 0,0

1 |X = x,D = 1, E = 0]︸ ︷︷ ︸
δ1,0t (x)

|D = 1, E = 0


=EX|D=1,E=0δ

1,0
t (x) (3)

ATET
D|E=1
t|D=0,E=1 is defined as the expected difference in the potential outcomes, Y 1,1

1 − Y 0,1
1 ,

4Theoretically, there exists also an ATET of treatment D for this group given that they do not receive

treatment E, ATET
D|E=0
t|D=1,E=1 = E[Y 1,0

1 − Y 0,0
1 |D = 1, E = 1]. But there is no corresponding population, so we

can neglect it.
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conditional on receiving the treatment E but not treatment D:

ATET
D|E=1
t|D=0,E=1 =E[Y 1,1

1 − Y 0,1
1 |D = 0, E = 1]

=E

E[Y 1,1
1 − Y 0,1

1 |X = x,D = 0, E = 1]︸ ︷︷ ︸
δ0,1t (x)

|D = 0, E = 1


=EX|D=0,E=1δ

0,1
t (x) (4)

ATET
D|E=0
t|D=0,E=0 is defined as the expected difference in the potential outcomes, Y 1,1

1 − Y 0,0
1 ,

conditional on receiving neither the treatment E nor the treatment D:

ATET
D|E=0
t|D=0,E=0 =E[Y 1,0

1 − Y 0,0
1 |D = 0, E = 0]

=E

E[Y 1,0
1 − Y 0,0

1 |X = x,D = 0, E = 0]︸ ︷︷ ︸
δ0,0t (x)

|D = 0, E = 0


=EX|D=0,E=0δ

0,0
t (x) (5)

2.2.2 Average treatment effect of E

The ATE of treatment E in which the researcher is not particularly interested can be analo-

gously derived to the previous section and is defined as:

εD,E (6)

2.2.3 Average treatment effect of D and E

The ATE of treatments D and E in period t is defined as the sum of the ATET of treatment

D and E, weighted with the respective probabilities:

ATED,E
t =P (D = 1, E = 1)ATETD,Et|D=1,E=1

+ P (D = 1, E = 0)ATETD,Et|D=1,E=0

+ P (D = 0, E = 1)ATETD,Et|D=0,E=1

+ P (D = 0, E = 0)ATETD,Et|D=0,E=0 (7)
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ATETD,Et|D=1,E=1 can be specified as the expected difference in the potential outcomes, Y 1,1
1 −Y

0,0
1 ,

conditional on receiving both treatment E and treatment D:

ATETD,Et|D=1,E=1 =E[Y 1,1
1 − Y 0,0

1 |D = 1, E = 1]

=E

E[Y 1,1
1 − Y 0,0

1 |X = x,D = 1, E = 1]︸ ︷︷ ︸
γ1,1t (x)

|D = 1, E = 1


=EX|D=1,E=1γ

1,1
t (x) (8)

ATETD,Et|D=1,E=0 can be specified as the expected difference in the potential outcomes, Y 1,1
1 −Y

0,0
1 ,

conditional on receiving treatment D but not treatment E:

ATETD,Et|D=1,E=0 =E[Y 1,1
1 − Y 0,0

1 |D = 1, E = 0]

=E

E[Y 1,1
1 − Y 0,0

1 |X = x,D = 1, E = 0]︸ ︷︷ ︸
γ1,0t (x)

|D = 1, E = 0


=EX|D=1,E=0γ

1,0
t (x) (9)

ATETD,Et|D=0,E=1 can be specified as the expected difference in the potential outcomes, Y 1,1
1 −Y

0,0
1 ,

conditional on receiving treatment E but not treatment D:

ATETD,Et|D=0,E=1 =E[Y 1,1
1 − Y 0,0

1 |D = 0, E = 1]

=E

E[Y 1,1
1 − Y 0,0

1 |X = x,D = 0, E = 1]︸ ︷︷ ︸
γ0,1t (x)

|D = 0, E = 1


=EX|D=0,E=1γ

0,1
t (x) (10)

Finally, ATETD,Et|D=0,E=0 can be specified as the expected difference in the potential outcomes,

Y 1,1
1 − Y 0,0

1 , conditional on receiving neither treatment E nor treatment D:

ATETD,Et|D=0,E=0 =E[Y 1,1
1 − Y 0,0

1 |D = 0, E = 0]

=E

E[Y 1,1
1 − Y 0,0

1 |X = x,D = 0, E = 0]︸ ︷︷ ︸
γ0,0t (x)

|D = 0, E = 0


=EX|D=0,E=0γ

0,0
t (x) (11)

The following section introduces the assumptions which we utilize for the identification of the
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treatment effects in a multiple treatment context.

2.3 Assumptions

2.3.1 Stable unit treatment value assumption (SUTVA)

In general, the stable unit treatment value assumption (SUTVA) states that only one of the

potential outcomes is observed, i.e. either the potential outcome when treated or the potential

outcome when untreated (c.f. Rubin, 1986). Applied to a setup with multiple treatment, the

SUTVA states that a potential outcome is observed in case of multiple treatments D and E, a

singular treatment D or E or no treatment at all. Formally, four combinations are observed:

Yt =deY 1,1
t + (1− d)eY 0,1

t + d(1− e)Y 1,0
t + (1− d)(1− e)Y 0,0

t (12)

We are going to relax this assumption in subsequent sections in order to determine the treatment

effects under additional assumptions.

2.3.2 Exogeneity (EXO)

The exogeneity assumption states that both treatments D and E are unrelated to the covariates

X. Hence, the covariates are equal for all potential combinations of treatments D and E.

Formally,

X1,1 =X0,1 = X1,0 = X0,0 (13)

2.3.3 No effect on the pre-treatment population (NOPT)

We further postulate that the treatments D and E do not have an impact on the outcome in

the pre-treatment population. Formally,

E[Y 1,0
0 − Y 0,0

0 |X = x,D = d,E = e] = 0 ∀d ∈ [0, 1]&∀e ∈ [0, 1] (14)

E[Y 0,1
0 − Y 0,0

0 |X = x,D = d,E = e] = 0 ∀d ∈ [0, 1]&∀e ∈ [0, 1] (15)

E[Y 1,1
0 − Y 0,0

0 |X = x,D = d,E = e] = 0 ∀d ∈ [0, 1]&∀e ∈ [0, 1] (16)

2.3.4 Common trends (CT)

Consistently with the established DiD approach under consideration of a singular treatment, we

utilize several common trend assumptions in the follow sections. In general, the common trend

assumptions state that the development of the differences in the expected potential untreated

outcomes conditional on X is unrelated to belonging to the treated or control group in the

post-treatment period (compare Lechner (2011)). In light of the multiple treatment setup, the
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identification of the different effects requests different common trend assumption. Therefore,

we specify the following five common trend assumptions:

The first common assumption, CT1, states that the development of the differences in the ex-

pected potential untreated outcomes conditional on X is unrelated to belonging to the group

getting both treatments or the group getting no treatment in the post-treatment period:

a) CT1

E[Y 0,0
1 |X = x,D = 1, E = 1]− E[Y 0,0

0 |X = x,D = 1, E = 1]

=E[Y 0,0
1 |X = x,D = 0, E = 0]− E[Y 0,0

0 |X = x,D = 0, E = 0] ∀x ∈ X (17)

The second common assumption, CT2, states that the development of the differences in the

expected potential untreated outcomes conditional on X is unrelated to belonging to the group

getting only treatment D or the group getting no treatment in the post-treatment period:

b) CT2

E[Y 0,0
1 |X = x,D = 1, E = 0]− E[Y 0,0

0 |X = x,D = 1, E = 0]

=E[Y 0,0
1 |X = x,D = 0, E = 0]− E[Y 0,0

0 |X = x,D = 0, E = 0]

=E[Y 0,0
1 |X = x,E = 0]− E[Y 0,0

0 |X = x,E = 0] ∀x ∈ X (18)

The third common assumption, CT3, states that the development of the differences in the ex-

pected potential treated (with E) outcomes conditional on X is unrelated to belonging to the

group getting both treatments or the group getting only treatment E in the post-treatment

period:

c) CT3

E[Y 0,1
1 |X = x,D = 1, E = 1]− E[Y 0,1

0 |X = x,D = 1, E = 1]

=E[Y 0,1
1 |X = x,D = 0, E = 1]− E[Y 0,1

0 |X = x,D = 0, E = 1]

=E[Y 0,1
1 |X = x,E = 1]− E[Y 0,1

0 |X = x,E = 1] ∀x ∈ X (19)

The fourth common assumption, CT4, states that the development of the differences in the

expected potential untreated outcomes conditional on X is unrelated to belonging to the group

getting only treatment D or the group getting no treatment at all in the post-treatment period:

9



d) CT4

E[Y 0,0
1 |X = x,D = 0, E = 1]− E[Y 0,0

0 |X = x,D = 0, E = 1]

=E[Y 0,0
1 |X = x,D = 0, E = 0]− E[Y 0,0

0 |X = x,D = 0, E = 0]

=E[Y 0,0
1 |X = x,D = 0]− E[Y 0,0

0 |X = x,D = 0] ∀x ∈ X (20)

The fifth common assumption, CT5, states that the development of the differences in the ex-

pected potential treated (with D) outcomes conditional on X is unrelated to belonging to the

group getting both treatments or the group getting only treatment E in the post-treatment

period:

e) CT5

E[Y 1,0
1 |X = x,D = 1, E = 1]− E[Y 1,0

0 |X = x,D = 1, E = 1]

=E[Y 1,0
1 |X = x,D = 1, E = 0]− E[Y 1,0

0 |X = x,D = 1, E = 0]

=E[Y 1,0
1 |X = x,D = 1]− E[Y 1,0

0 |X = x,D = 1] ∀x ∈ X (21)

In the follow section, we utilize the standard assumptions introduced above in order to identify

the ATET under multiple treatments.

2.4 Identification under standard assumptions

Based on the standard assumptions laid out in the previous section, i.e. CT, NOPT, EXO and

SUTVA, we can identify several ATET. The identification of the ATET are laid our below with

respect to singular treatments D or E and regarding multiple treatments D and E.

2.4.1 Average treatment effect of treatment D

The ATET of treatment D can be identified both in case of a singular treatment and in case

of a multiple treatment setup. For the former setup the standard DiD setup can be utilized

while making use of the standard common trend assumption (CT2). As highlighted above, this

assumption states that the potential outcome of the treatment group exposed to treatment D

(i.e. treatment group: D=1, E=0) would have moved in parallel to the outcome of a con-

trol group not exposed to any treatments (i.e. control group: D=0, E=0), in the absence of

treatment D in the treatment group. This baseline scenario is already well established in the

literature (see e.g. Athey and Imbens, 2006; Lechner, 2011). Proposition 1 below summarizes

the identifying assumptions accordingly.
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Proposition 1: The ATET of treatment D, ATET
D|E=0
t|D=1,E=0, can be identified by utilizing the

following assumptions:

� CT2;

� NOPT;

� EXO;

� SUTVA.

Proof: Based on the linearity of expectations, δ1,0t (x) can be expressed as follows:

δ1,0t (x) = E[Y 1,0
1 |X = x,D = 1, E = 0]− E[Y 0,0

1 |X = x,D = 1, E = 0] (22)

Utilizing the SUTVA assumption in the minuend yields:

δ1,0t (x) = E[Y1|X = x,D = 1, E = 0]− E[Y 0,0
1 |X = x,D = 1, E = 0] (23)

Making use of the common trend assumption CT2 in the subtrahend gives us:

E[Y 0,0
1 |X = x,D = 1, E = 0] =E[Y 0,0

0 |X = x,D = 1, E = 0]

+ E[Y 0,0
1 |X = x,D = 0, E = 0]

− E[Y 0,0
0 |X = x,D = 0, E = 0] (24)

Again, applying the SUTVA assumption leads to:

E[Y 0,1
1 |X = x,D = 1, E = 1] =E[Y 0,0

0 |X = x,D = 1, E = 0]

+ E[Y1|X = x,D = 0, E = 0]

− E[Y0|X = x,D = 0, E = 0] (25)

Applying the NOPT assumption to the minuend yields:

E[Y 0,0
0 |X = x,D = 1, E = 0] =E[Y 1,0

0 |X = x,D = 1, E = 0]

−
{
E[Y 1,0

0 |X = x,D = 1, E = 0]− E[Y 0,0
0 |X = x,D = 1, E = 0]

}︸ ︷︷ ︸
=δ00(x)=0

=E[Y 1,0
0 |X = x,D = 1, E = 0] (26)

11



Based on the SUTVA assumption, it holds:

E[Y 1,0
0 |X = x,D = 1, E = 0] =E[Y0|X = x,D = 1, E = 0] (27)

Consolidating the previous elements, leads to the well established DiD identification strategy:

δ1,0t (x) = E[Y1|X = x,D = 1, E = 0]− E[Y0|X = x,D = 1, E = 0]

− {E[Y1|X = x,D = 0, E = 0]− E[Y0|X = x,D = 0, E = 0]} (28)

�

Proposition 1 was devoted to the baseline scenario which is characterized by a treatment group

which was exclusively exposed to treatment D and a control group which was not exposed to

any treatment at all. In this case, the standard DiD strategy has to be applied in order to

identify the ATET of treatment D.

In addition, proposition 2 is devoted to a multiple treatment scenario in which the treatment

group is exposed to both treatments D and E (i.e. treatment group: D=1, E=1). In this case

an adjusted DiD strategy can be utilized under certain assumptions as laid out in proposition 2.

Based on this adjusted DiD strategy, the effect of the additional treatment E can be neutralized

and eliminated by relying on an adjusted control group which is exposed to treatment E but

not to treatment D (i.e. control group: D=0, E=1).

Proposition 2: The ATET of treatment D, ATET
D|E=1
t|D=1,E=1, can be identified by utilizing the

following assumptions:

� CT3;

� SUTVA;

� NOPT;

� EXO.

Proof: Based on the linearity of expectations, δ1,1t (x) can be expressed as follows:

δ1,1t (x) = E[Y 1,1
1 |X = x,D = 1, E = 1]− E[Y 0,1

1 |X = x,D = 1, E = 1] (29)

Utilizing the SUTVA assumption in the minuend yields:

δ1,1t (x) = E[Y1|X = x,D = 1, E = 1]− E[Y 0,1
1 |X = x,D = 1, E = 1] (30)
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Making use of the common trend assumption CT3 in the subtrahend gives us:

E[Y 0,1
1 |X = x,D = 1, E = 1] =E[Y 0,1

0 |X = x,D = 1, E = 1]

+ E[Y 0,1
1 |X = x,D = 0, E = 1]

− E[Y 0,1
0 |X = x,D = 0, E = 1] (31)

Again, applying the SUTVA assumption leads to:

E[Y 0,1
1 |X = x,D = 1, E = 1] =E[Y 0,1

0 |X = x,D = 1, E = 1]

+ E[Y1|X = x,D = 0, E = 1]

− E[Y0|X = x,D = 0, E = 1] (32)

Applying the NOPT assumption to the minuend yields:

E[Y 0,1
0 |X = x,D = 1, E = 1] =E[Y 1,1

0 |X = x,D = 1, E = 1]

−
{
E[Y 1,1

0 |X = x,D = 1, E = 1]− E[Y 0,1
0 |X = x,D = 1, E = 1]

}︸ ︷︷ ︸
=δ0(x)=0

=E[Y 1,1
0 |X = x,D = 1, E = 1] (33)

Based on the SUTVA assumption, it holds:

E[Y 1,1
0 |X = x,D = 1, E = 1] =E[Y0|X = x,D = 1, E = 1] (34)

Consolidating the previous elements, leads to the adjusted DiD strategy:

δ1,1t (x) = E[Y1|X = x,D = 1, E = 1]− E[Y0|X = x,D = 1, E = 1]

− {E[Y1|X = x,D = 0, E = 1]− E[Y0|X = x,D = 0, E = 1]} (35)

�

According to proposition 2, the adjusted DiD strategy eliminates the effect of the additional

treatment E in the treatment group by relying on a control group which is exposed to treatment

E but not to treatment D. As a consequence, the effect of treatment D on the outcome variable

Y can be extracted.

2.4.2 Average treatment effect of treatment E

The ATET regarding treatment E under multiple treatments (i.e. treatment group: D=1,

E=1) can be identified consistently with the adjusted DiD strategy introduced in proposition
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2. Instead of a control group which is exclusively exposed to treatment E as highlighted in the

previous section, a control group has to be defined which is exclusively exposed to treatment

D and not exposed to treatment E. The adjusted control group neutralizes the additional

treatment D (i.e. control group: D=1, E=0) as part of the adjusted approach.

2.4.3 Average treatment effect of treatments D and E

In some cases, researchers might be interested in the additive treatment D and E on an out-

come variable Y (i.e. treatment group: D=1, E=1). In this case the researcher has to rely on

a control group which is exposed to neither treatment D nor treatment E (i.e. control group:

D=0, E=0). The detailed identifying assumptions are laid out in proposition 3.

Proposition 3: The ATET of treatments D and E, ATETD,Et|D=1,E=1, can be identified by uti-

lizing the following assumptions:

� CT1;

� SUTVA;

� NOPT;

� EXO.

Proof: Based on the linearity of expectations, γ1,1t (x) can be expressed as follows:

γ1,1t (x) = E[Y 1,1
1 |X = x,D = 1, E = 1]− E[Y 0,0

1 |X = x,D = 1, E = 1] (36)

Utilizing the SUTVA assumption in the minuend yields:

γ1,1t (x) = E[Y1|X = x,D = 1, E = 1]− E[Y 0,0
1 |X = x,D = 1, E = 1] (37)

Making use of the common trend assumption CT1 in the subtrahend gives us:

E[Y 0,0
1 |X = x,D = 1, E = 1] =E[Y 0,0

0 |X = x,D = 1, E = 1]

+ E[Y 0,0
1 |X = x,D = 0, E = 0]

− E[Y 0,0
0 |X = x,D = 0, E = 0] (38)
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Again, applying the SUTVA assumption leads to:

E[Y 0,0
1 |X = x,D = 1, E = 1] =E[Y 0,0

0 |X = x,D = 1, E = 1]

+ E[Y1|X = x,D = 0, E = 0]

− E[Y0|X = x,D = 0, E = 0] (39)

Applying the NOPT assumption to the minuend yields:

E[Y 0,0
0 |X = x,D = 1, E = 1] =E[Y 1,1

0 |X = x,D = 1, E = 1]

−
{
E[Y 1,1

0 |X = x,D = 1, E = 1]− E[Y 0,0
0 |X = x,D = 1, E = 1]

}︸ ︷︷ ︸
=γ0(x)=0

=E[Y 1,1
0 |X = x,D = 1, E = 1] (40)

Based on the SUTVA assumption, it holds:

E[Y 1,1
0 |X = x,D = 1, E = 1] =E[Y0|X = x,D = 1, E = 1] (41)

Combining the previous elements leads to the DiD strategy:

γ1,1t (x) = E[Y1|X = x,D = 1, E = 1]− E[Y0|X = x,D = 1, E = 1]

− {E[Y1|X = x,D = 0, E = 0]− E[Y0|X = x,D = 0, E = 0]} (42)

�

While the previous section was devoted to the ATET under multiple treatments, the following

section refers to population treatment effects, i.e. average treatment effects of the untreated

(ATEU).

2.5 Population treatment effects

With respect to the treatment of interest D, we laid out the respective strategies for identifying

δ1,0t (x) and δ1,1t (x) in the previous section. However, we were not able to identify the effects

δ0,1t (x) and δ0,0t (x) under the set of standard assumptions. As a remedy, this section shows

under which assumptions we identify the additional population treatment effects.

2.5.1 Additional assumptions

The following section introduces additional assumptions which we utilize for the identification of

the population treatment effects below. Apart from additional common trend assumptions, CT6
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- CT8, the additional assumptions comprise a no interaction assumption between treatment D

and treatment E.

The no interaction assumption, postulates that the treatments D and E do not unfold inter-

action effects in their impact on the outcome variable Y . Formally, this assumption can be

formulated as the equality in the expected differences between the potential outcomes in case

of no additional treatment E and the expected difference in the potential outcomes in case of

an additional treatment E:

No interaction assumption (NOINT):

E[Y 1,0
1 − Y 0,0

1 |X = x,D = 0, E = 0] =E[Y 1,1
1 − Y 0,1

1 |X = x,D = 0, E = 0] (43)

CT6: The sixth common assumption, CT6, states that the development of the differences

in the expected potential treated (with D and E) outcomes conditional on X is unrelated to

belonging to the group getting only treatment E or the group getting both treatments in the

post-treatment period:

E[Y 1,1
1 − Y 1,1

0 |X = x,D = 0, E = 1] =E[Y 1,1
1 − Y 1,1

0 |X = x,D = 1, E = 1] (44)

The seventh common assumption, CT7, states that the development of the differences in the

expected potential treated (with D and E) outcomes conditional on X is unrelated to belonging

to the group getting both treatments or the group getting no treatment in the post-treatment

period:

CT7:

E[Y 1,1
1 − Y 1,1

0 |X = x,D = 0, E = 0] =E[Y 1,1
1 − Y 1,1

0 |X = x,D = 1, E = 1] (45)

The eighth common assumption, CT8, states that the development of the differences in the

expected potential treated (with E) outcomes conditional on X is unrelated to belonging to

the group getting both treatments or the group getting no treatment in the post-treatment

period.

CT8:

E[Y 0,1
0 |X = x,D = 0, E = 0]− E[Y 0,1

1 |X = x,D = 0, E = 0]

= E[Y 0,1
0 |X = x,D = 1, E = 1]− E[Y 0,1

1 |X = x,D = 1, E = 1] (46)
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2.5.2 Identification

The following sections are utilizing the initial and additional assumptions in order to identify

the ATE in the population, δ1,0t (x) and δ1,1t (x), which were not identified in the previous sec-

tion. With respect to the treatment D we have to separate two scenarios. In the first scenario

the ATE of treatment D is identified while treatment E is observed consistently in both periods.

Proposition 4: The ATET of treatment D, ATET
D|E=1
t|D=0,E=1, can be identified by utilizing the

following assumptions:

� CT6;

� SUTVA;

� NOPT;

� EXO;

� NOINT.

Proof: Making use of the common trend assumption CT6 and the SUTVA assumption yields:

E[Y 1,1
1 − Y 0,1

1 |X = x,D = 0, E = 1] =E[Y 1,1
1 |X = x,D = 1, E = 1]− E[Y 1,1

0 |X = x,D = 1, E = 1]

+ E[Y 1,1
0 |X = x,D = 0, E = 1]− E[Y 0,1

1 |X = x,D = 0, E = 1]

=E[Y1|X = x,D = 1, E = 1]− E[Y0|X = x,D = 1, E = 1]

+ E[Y 1,1
0 |X = x,D = 0, E = 1]− E[Y1|X = x,D = 0, E = 1]

(47)

From the NOPT assumption introduced in the previous section follows:

E[Y 1,1
0 |X = x,D = 0, E = 1] =E[Y 0,1

0 |X = x,D = 0, E = 1]

−
{
E[Y 1,1

0 |X = x,D = 0, E = 1]− E[Y 0,1
0 |X = x,D = 0, E = 1]

}︸ ︷︷ ︸
=γ0(x)=0

=E[Y 0,1
0 |X = x,D = 0, E = 1] (48)

Again utilizing the SUTVA assumption gives us:

E[Y 0,1
0 |X = x,D = 0, E = 1] = E[Y0|X = x,D = 0, E = 1] (49)
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Thus, it follows:

δ0,1t (x) =E[Y1|X = x,D = 1, E = 1]− E[Y0|X = x,D = 1, E = 1]

+ E[Y0|X = x,D = 0, E = 1]− E[Y1|X = x,D = 0, E = 1] (50)

�

Based on proposition 4, the identification of δ1,0t (x), is based primarily on additional common

trend assumptions. In order to identify δ1,1t (x), we assume that a singular treatment D is im-

plemented.

Proposition 5: The ATET of treatment D, ATET
D|E=0
t|D=0,E=0, can be identified by utilizing the

following assumptions:

� CT7;

� CT8;

� SUTVA;

� NOPT;

� EXO;

� NOINT.

Proof: Utilizing the assumptions NOINT1 and CT7 yields:

E[Y 1,0
1 − Y 0,0

1 |X = x,D = 0, E = 0] = E[Y 1,1
1 |X = x,D = 0, E = 0]− E[Y 0,1

1 |X = x,D = 0, E = 0]

= E[Y 1,1
0 |X = x,D = 0, E = 0] + E[Y 1,1

1 |X = x,D = 1, E = 1]− E[Y 1,1
0 |X = x,D = 1, E = 1]

−E[Y 0,1
1 |X = x,D = 0, E = 0] (51)

Utilizing the NOPT assumption gives us:

E[Y 1,1
0 |X = x,D = 0, E = 0] =E[Y 0,1

0 |X = x,D = 0, E = 0]

+ E[Y 0,1
0 |X = x,D = 0, E = 0]− E[Y 1,1

0 |X = x,D = 0, E = 0]︸ ︷︷ ︸
=0

=E[Y 0,1
0 |X = x,D = 0, E = 0] (52)

18



Based on the common trend assumption CT8 it follows:

E[Y 0,1
0 |X = x,D = 1, E = 1]− E[Y 0,1

1 |X = x,D = 1, E = 1]

= E[Y 0,1
0 |X = x,D = 0, E = 1]− E[Y 0,1

1 |X = x,D = 0, E = 1] (53)

Consolidating leads to:

δ0t (x) ={E[Y 1,1
1 |X = x,D = 1, E = 1]− E[Y 1,1

0 |X = x,D = 1, E = 1]}

− {E[Y 0,1
1 |X = x,D = 0, E = 1]− E[Y 0,1

0 |X = x,D = 0, E = 1]} (54)

Applying the SUTVA assumption gives us:

δ0t (x) ={E[Y1|X = x,D = 1, E = 1]− E[Y0|X = x,D = 1, E = 1]}

− {E[Y1|X = x,D = 0, E = 1]− E[Y0|X = x,D = 0, E = 1]} (55)

�

The following section provides an overview of the underlying assumptions for each case and

describes the corresponding identification strategies based on empirical data.

2.6 Discussion

In the previous sections, we laid out five propositions which facilitate the identification of

treatment effects in a multiple treatment setup. Depending on the particular treatment effect,

we made use of adjusted treatment and control groups which are summarized in table 1. The

identification of the effect of treatment D, the main treatment of interest, requires either a

treatment group which is exclusively exposed to treatment D and a control group which is not

exposed to any treatment, consistently with the standard setup (column 1 in the table 1), or a

treatment group which is simultaneously exposed to treatment D and E and a control group

which is exclusively exposed to treatment E (column 2). The latter was referred to as adjusted

DiD strategy as part of this paper. The exposition to a partial treatment in the control group as

part of the adjusted strategy is necessary to eliminate and neutralize the effect of the additional

treatment E on the outcome variable.

In addition, identifying the joint effect of the treatments D and E requires a treatment group

which is exposed to the joint treatment D and E and a control group which receives not a

treatment at all (column 3). For the identification of the remaining group specific treatment

effects (ATEU) that are necessary to identify the average treatment effect in the population

(ATE), the treatment group is consistently composed of observations receiving both treatments
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D and E and the control group is consistently composed of observations receiving exclusively

treatment E (columns (4) and (5)).

Table 1: Treatment and control groups underlying the DiD approach with multiple treatments.

ATET ATEU

(1) (2) (3) (4) (5)

δ1,0t (x) δ1,1t (x) γ1,1t (x) δ0,1t (x) δ0,0t (x)

D = 0, E = 0 Control Control

D = 1, E = 0 Treatment

D = 0, E = 1 Control Control Control

D = 1, E = 1 Treatment Treatment Treatment Treatment

Notes: This table reports the respective treatment and control groups for the adjusted DiD identi-

fication strategy under multiple treatments. Column (1) highlights the treatment and control group

for the standard strategy under a singular treatment. Column (2) reports the treatment and control

group for the adjusted strategy under multiple treatments. Column (3) highlights the treatment and

control group for a strategy for the identification of the joint effect of treatments D and E. Columns

(4) and (5) depict the treatment and control groups for the identification of population treatment

effects.

Complementary to the overview of the treatment and control group underlying the propositions

1 to 5, table 2 provides a detailed list of assumptions for the identification of the respective aver-

age treatment effects (ATET/ATEU) of treatment D. In contrast to the standard identification

strategy which mainly rests on a common trend assumption (column 1 in table 2), the adjusted

identification strategy requires a different common trend assumption depending on the effect of

interest (columns (2) to (5) in table 2). For the identification of the average treatment effect in

the population the adjusted identification strategy additionally requires that the treatments D

and E unfold separate effects on the outcome variable Y and do not unfold interaction effects

among each other. The absence of interaction effects implies that the treatments D and E are

additive in their impact on the outcome variable Y. This assumption can be indicatively tested

in a setup with staggered policy interventions. In particular, if the interventions D and E have

been implemented sequentially in the treatment group, it can in fact be verified whether the

effects on the outcome variable are additive and whether interaction effects on the outcome

variable are significant. As indicated above, especially in federal contexts, policy interventions

are often put in place sequentially rather than simultaneously. The adjusted common trend

assumptions can be indicatively tested based on parallel pre-treatment trends, however, part of

the common trend assumptions require a sequential implementation of the treatments as well
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in order to perform pre-treatment tests.

Table 2: Identifying assumptions for the DiD approach with multiple treatments.

ATET ATEU

(1) (2) (3) (4) (5)

δ1,0t (x) δ1,1t (x) γ1,1t (x) δ0,1t (x) δ0,0t (x)

SUTVA X X X X X

NOPT X X X X X

EXO X X X X X

NOINT1 X X

CT1 X

CT2 X

CT3 X

CT6 X

CT7 X

CT8 X

Notes: This table reports the identifying assumptions of the adjusted DiD identification strategy

under multiple treatments. Columns (1) to (3) refer to the identifying assumptions of the average

treatment effect on the treated while columns (4) and (5) highlight the identifying assumptions of the

population treatment effects.

The adjusted DiD strategy can be implemented in consistency with the standard DiD approach

by making use of an OLS estimator with the respective dummy variables, i.e. a regional dummy

variable which equals 1 for the treatment group and 0 for the control group, a time dummy

variable which equals 1 after the implementation of the treatment and 0 otherwise as well as

an interaction effect of the time and regional dummy variable on the outcome variable.

3 Conclusion

A common problem in the field of policy evaluation is that several treatments or policy in-

terventions are put in place simultaneously. These multiple treatments undermine the partial

identification of treatment effects while utilizing the standard DiD strategy. As a remedy, this

paper introduces an adjusted DiD identification strategy which is particularly tailored to the
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causal identification of treatment effects under multiple treatments. We show that under stan-

dard DiD assumptions and an adjusted common trend assumption the ATET of a singular

treatment can be identified if there is a control group available that is exclusively exposed to

the additional treatment which is not of interest for the researcher. The partial treatment

of the control group allows to neutralize and eliminate the effect of the additional treatment.

The identification of the average treatment effect in the population, however, rests on stronger

assumptions, i.e. additional common trend assumptions and the requirement that both treat-

ments do not interact with each other. The adjusted DiD identification strategy is particularly

relevant for the investigation of political reforms since these are rarely put in place without

accompanying reforms (see e.g. Roller and Steinberg, 2020).
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